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Abstract. Energetic relaxation and recombination of charge carriers are considered at low
temperatures in disordered hopping systems, taking the increasing occupation of deep localized
states into account. It is shown that, in the course of carrier relaxation controlled by
monomolecular recombination, the occupational density of localized states does not change
with time. If bimolecular recombination represents the dominant mode of the carrier-density
relaxation, all deep localized states will sooner or later be occupied and the filling effect plays
an important role in the process of relaxation.

1. Introduction

At low temperatures, charge-carrier recombination is one of the most important processes
controlling the kinetics of photoconductivity, photo- and electroluminescence, photoinduced
optical absorption, etc. in disordered materials. These materials are characterized by a broad
energy spectrum and a random spatial distribution of the localized states which play the
role of hopping sites for charge carriers [1, 2]. Carrier kinetics in such materials is normally
considered as a random walk within a positionally and energetically disordered network of
hopping sites [3–5]. In addition, some amorphous materials also have bands of extended
states for electrons and holes. Trap-modulated band transport is then the dominant mode
of carrier drift, diffusion, and recombination in such materials at high temperatures [6–8].
However, at sufficiently low temperatures thermally activated carrier jumps into the bands of
delocalized states become very improbable and trap-controlled transport changes to carrier
hopping [9, 10]. Hence, to understand electronic processes in disordered materials at low
temperatures one should consider carrier tunnelling events in a random system of hopping
sites.

Since, on the one hand, amorphous materials are characterized by a broad distribution
of localized-state energies and, on the other hand, carrier jumps to shallower states are not
very probable at low temperatures, downward hopping in that distribution will determine
the kinetics of all low-temperature processes in disordered systems [11–14]. If the total
density of carriers remains constant all deep states will sooner or later be filled and further
downward jumps become impossible [15]. This leads to the establishment of a quasi-Fermi
level whose position is determined by the interplay between the total density of carriers
and the energy distribution of the localized states [15]. However, if the carrier density
decreases with time due to recombination, the filling of deep states can be avoided provided
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the decrease is sufficiently fast. Since the rate of recombination is controlled by carrier
hopping, the problem must be considered in a self-consistent way. A relevant question is
then: does recombination provide a sufficiently fast decrease of the total carrier density to
allow for a weak-filling regime of carrier hopping, or should the filling effect always be
taken into consideration?

While we discussed the process of low-temperature energy relaxation in one previous
paper [14] and the influence of trap filling on that process in a second one [15], those
studies did not take into account the effect of recombination. In the present paper we
add this effect and investigate specifically the role of charge-carrier recombination on the
energy relaxation. Both mono- and bimolecular modes of recombination are considered. It
is shown that the monomolecular mode provides a sufficiently high rate of recombination
and maintains a constant occupation of deep states independent of the initial degree of
filling. The rate of bimolecular recombination is proportional to the square of the carrier
density such that the ratio of the recombination rate to the total carrier density decreases with
time. Concomitantly, the rate of recombination will sooner or later be too low to sustain
the weak-filling regime of carrier hopping and the regime of high occupational density of
deep localized states will be established even if the initial filling is arbitrarily weak.

2. Energetic diffusion in a disordered hopping system

Only downward carrier jumps are allowed at low temperatures and the energy distribution
of localized carriers therefore always remains in non-equilibrium. In other words, most
carriers occupy ‘metastable’ hopping sites. A state is called metastable when the carriers
which were captured at a timet ′ < t still have a high probability of being found in the
same state at a given timet . At the initial time, t = 0, all sites are, obviously, metastable
and the density of metastable states (DMS),gd(E, t), is simply equal to the total density
of states (DOS),g(E). In a spatially completely disordered system, distances to deeper
hopping sites, accessible for the next jump, are characterized by a broad distribution such
that some of the states remain metastable at any time. As already shown in [15] on the
basis of the Poisson formalism, the probabilityϕ(E, t) for a hopping site with the energy
E to be a metastable state at timet can be written in the following form:

ϕ(E, t) =
∫ ∞

0
dr

dn(E, r, t)

dr
exp[−n(E, r, t)] exp[−ν0t exp(−2γ r)] (1)

wherer is the spatial coordinate,γ the inverse localization radius,n the density of localized
states available for a downward jump of a carrier from a localized state of energyE, and
ν0 the attempt-to-jump frequency. The energy scale assigns higher energies to deeper
states. Equation (1) represents the integrated product of the number of states available
for a downward jump in energy fromE and the probability that no such jump has taken
place up to timet . The latter is just then = 0 term of a Poisson distribution. The energy-
independent exponential term in the integrand of equation (1) represents a very steep function
of the variabler aroundrj = (1/2γ ) ln(ν0t) such that the following approximation becomes
possible: {

exp[−ν0t exp(−2γ r)] ≈ 0 r < rj (t)

exp[−ν0t exp(−2γ r)] ≈ 1 r > rj (t)
rj (t) = 1

2γ
ln(ν0t). (2)

This approximation allows the evaluation of the integral in equation (1) as

ϕ(E, t) = exp

{
−n

[
E,

1

2γ
ln(ν0t), t

]}
. (3)
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In a completely disordered system the density functionn(E, r, t) takes the form,

n(E, r, t) = 4πr3

3

{∫ ∞
E

dE′ [g(E′)− ρ(E′, t)]
}

(4)

where the functionρ(E, t) describes the energy distribution of localized carriers.
Concomitantly, the distribution function given by equation (3) reduces to,

ϕ(E, t) = exp

{
− V (t)

[ ∫ ∞
E

dE′ [g(E′)− ρ(E′, t)]
]}

(5)

whereV (t) is the volume of the sphere accessible for downward carrier jumps at the time
t ,

V (t) = 4π

3
[rj (t)]

3 = π

6γ 3
[ln(ν0t)]

3. (6)

It seems intuitively reasonable to assume that the energy distribution of localized carriers
must mimic the DMS function. Nevertheless, this can be the case only if a carrier released
from a hopping site (which then ceases to be a metastable state) can eventually make a jump
onto another currently metastable state, independent of the energy of the latter. However,
some hopping sites will cease to be metastable states while there are still sites with higher
energies which remain metastable—all in agreement with the probability distribution of
equation (5). As long as a carrier cannot jump upwards at low temperatures, this puts
such metastable states ‘out of reach’. This effect can, nevertheless, be disregarded since
the density of ‘shallow’ metastable states is small compared to the total DMS. Under such
conditions the energy distribution of localized carriers,ρ(E, t) can be represented as a
product of the DOS function,g(E), the probability,ϕ(E, t), for a site to be a metastable
state, and a functionχ(t) which represents the probability for a metastable state to be
occupied at the timet :

ρ(E, t) = χ(t)g(E)ϕ(E, t) (7)

Substituting equation (5) into equation (7) yields an integral equation for the
occupational probabilityf (E, t) = ρ(E, t)/g(E):

f (E, t) = χ(t) exp

{
− V (t)

[ ∫ ∞
E

dE′ g(E′)[1− f (E′, t)]
]}
. (8)

The solution of equation (8) can be written [15] in the form

f (E, t) = {1+ A(t) exp[V (t)N(E)]}−1 (9)

whereN(E) is the density of localized states with energies,E′, exceedingE:

N(E) =
∫ ∞
E

dE′ g(E′) (10)

and the functionA(t) must be found from the normalization condition,∫ ∞
−∞

dE′ g(E′)f (E′, t) = p(t) (11)

wherep(t) is the total carrier density. Substituting equations (9) and (10) into equation (11)
and integrating over energy yields the following relation between the functionsA(t) and
p(t):

f (∞, t) = [1+ A(t)]−1 = 1− exp[−p(t)V (t)]
1− exp[−NtV (t)] (12)



6872 V I Arkhipov and G J Adriaenssens

Nt being the total density of localized states. Since the probability to be a metastable
state for a hopping site with the energyE → ∞ approaches unity and the occupational
probability for this site is given byf (∞, t) the latter must be equal to the functionχ(t)—see
equations (5) and (8). Therefore, the density of metastable states,gd(E, t) = ρ(E, t)/χ(t),
can be written as,

gd(E, t) = g(E) 1− exp[−NtV (t)]
1− exp[−p(t)V (t)]

×
{

1+ exp[−p(t)V (t)] − exp[−NtV (t)]
1− exp[−p(t)V (t)] exp[V (t)N(E)]

}−1

. (13)

Integrating equation (13) over energy further yields an equation which relates the total
density of metastable states,Nd(t), to the total density of carriers as,

Nd(t) = 1− exp[−NtV (t)]
1− exp[−p(t)V (t)]p(t). (14)

To write an equation for the carrier densityp(t) next, one should consider not only the
kinetics of carrier jumps within the hopping system, but also take recombination jumps into
account.

3. Kinetics of carrier recombination

A carrier can escape from a sufficiently deep hopping site only when this site ceases to be
a metastable state. Therefore, the frequency,ωout(E, t), of carrier jumps from states with
energyE at time t can be written as,

ωout(E, t) = ρ(E, t)

gd(E, t)

∣∣∣∣∂gd(E, t)∂t

∣∣∣∣ = p(t)

Nd(t)

∣∣∣∣∂gd(E, t)∂t

∣∣∣∣ . (15)

The frequency,ωin(E, t), of carrier jumps onto a metastable state is determined by the
product of the total frequency of all carrier jumps at timet and the probability that a given
site with energyE will be a target state for a particular jump:

ωin(E, t) =
[

gd(E, t)− ρ(E, t)
Nd(t)− p(t)+ αNR(t)

] [
p(t)

Nd(t)

∣∣∣∣dNd(t)dt

∣∣∣∣] (16)

whereNR is the concentration of recombination centres andα accounts for the difference of
jump probabilities to a metastable state and to a recombination centre. Note that the effect
of trap filling is taken into consideration in equation (16). Combining equations (15) and
(16) one obtains the following equation for the kinetics of the localized carrier density:

∂ρ(E, t)

∂t
= p(t)

Nd(t)

[
gd(E, t)− ρ(E, t)

Nd(t)− p(t)+ αNR(t)
∣∣∣∣dNd(t)dt

∣∣∣∣− ∣∣∣∣∂gd(E, t)∂t

∣∣∣∣] . (17)

Integrating equation (17) over energy yields an equation for the total density of carriers:

dp(t)

dt
= − αNR(t)p(t)

Nd(t)[Nd(t)− p(t)+ αNR(t)]
∣∣∣∣dNd(t)dt

∣∣∣∣ = − αNR(t)

1− p(t)

Nd(t)

d

dt

[
p(t)

Nd(t)

]
. (18)

Solutions for the above equation can be readily obtained in the cases of either monomolecular
or bimolecular recombination, the two characteristic regimes which hold when the carrier
densityp(t) is either small with respect to the intrinsic density of recombination centres,NR,
or large with respect to that density. In the latter case recombination occurs predominantly
between carrier densities of opposing polarity.
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Since monomolecular recombination is characterized by a constant value of the
recombination centre concentration,NR(t) = NR = constant, equation (18) reduces to:

dp(t)

dt
= − αNR

1− p(t)

Nd(t)

d

dt

[
p(t)

Nd(t)

]
. (19)

By solving equation (19) with the initial conditionp(0) = p0, a transcendental equation
relating the functionsp(t) andNd(t) is obtained:

p(t) = Nd(t)
{

1−
(

1− p0

Nt

)
exp

[
−p0− p(t)

αNR

]}
. (20)

When finally the functionNd(t) is eliminated between equations (14) and (20) the following
equation is reached for the carrier densityp(t) under monomolecular recombination
conditions:

1− exp[−p(t)V (t)]
1− exp[−NtV (t)] =

{
1−

(
1− p0

Nt

)
exp

[
−p0− p(t)

αNR

]}
. (21)

For bimolecular recombination, under the condition of neutrality when densities of electrons
and holes are equal to each other, the concentration of recombination centres equals the
charge-carrier density such that equation (18) reads,

dp(t)

dt
= − αp(t)

1− p(t)

Nd(t)

d

dt

[
p(t)

Nd(t)

]
. (22)

Equation (22) can easily be solved, yielding

p(t) = p0

{
1− [p(t)/Nd(t)]

1− (p0/Nt)

}α
. (23)

Substituting the functionNd(t) from equation (14) into equation (23) one gets a
transcendental equation forp(t) under bimolecular recombination conditions,

p(t) = p0

exp[−p(t)V (t)] − exp[−NtV (t)](
1− p0

Nt

)
{1− exp[−NtV (t)]}


α

. (24)

Note that both equations (21) and (24) do not depend upon a particular choice of the
DOS function. Therefore, these equations represent a very general tool to study kinetics of
low-temperature recombination in various disordered hopping systems.

4. Results and discussion

4.1. Monomolecular recombination

For sufficiently long times of carrier-density relaxation, such thatNtV (t) � 1 is satisfied,
a solution of equation (21) reads

p(t) = p0

1− αNR
p0

ln
(

1− p0

Nt

)
1+ α πNR6γ 3 [ln(ν0t)]3

πNt

6γ 3
[ln(ν0t)]

3� 1. (25)

Substituting the long-time asymptotic form of equation (25), i.e. whenαNRV (t)� 1, into
equation (14) one gets

p(t)

Nd(t)
= 1−

(
1− p0

Nt

)
exp

(
− p0

αNR

)
. (26)
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Figure 1. Time dependence of the charge-carrier density controlled by monomolecular
recombination for different values of the effective recombination centre concentrationαNR .
Further parameters are:Nt = 1020 cm−3, 6γ 3/π = 1021 cm−3.

If the initial trap filling is sufficiently weak,p0/Nt � 1 and p0/αNR � 1, the ratio
p(t)/Nd(t) remains small at any time and the functionp(t) approaches its weak-occupation
form which is similar to that obtained in [14]. It is very important to note that, in general,
the ratiop(t)/Nd(t) does not depend upon time if the total density of carriers is controlled
by monomolecular recombination. In other words, monomolecular recombination maintains
the trap-filling regime throughout the whole time interval of carrier relaxation and there is
no transition from a weak-filling to a strong-filling regime or vice versa. Another interesting
feature of thep(t) function is its scaling-like dependence upon the initial density of carriers,
p0 for all realistic values of the other parameters. Indeed, the second term in the numerator
of the right-hand side of equation (25) can be estimated as eitherαNR

Nt
if p0 � Nt or

αNR
Nt

ln(1− p0

Nt
) if p0 ≈ Nt . The regime of diffusion-controlled recombination, which is

normally realized in disordered materials, impliesαNR � Nt . The latter condition makes
the second term small compared with unity and the ratiop(t)/p0 becomes independent
of p0. The time dependence of the carrier density obtained by the numerical solution of
equation (21) is presented in figure 1.

4.2. Bimolecular recombination

We again consider charge-carrier kinetics at a time satisfying the inequalityNtV (t) � 1.
Under this condition equation (24) reduces to

p(t) = p0

(
1− p0

Nt

)−α
exp

[
−απp(t)

6γ 3
[ln(ν0t)]

3

]
πNt

6γ 3
[ln(ν0t)]

3� 1. (27)

An approximate analytic solution of equation (27) can be written in the form

p(t) = 6γ 3

πα
ln

{
παp0

6γ 3

(
1− p0

Nt

)−α
[ln(ν0t)]

3

}
[ln(ν0t)]

−3. (28)

Substituting equation (28) into equation (14) shows that, at long times, the functionp(t)

approaches the total density of deep states,p(t) ≈ Nd(t), t → ∞, independent of the
initial density of carriers. Thus, under the conditions of low-temperature bimolecular
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Figure 2. Time dependence of the charge-carrier density controlled by bimolecular
recombination for different values (a) of the initial carrier density and (b) of the recombination
cross section. Further parameters are identical to those of figure 1.

recombination, filling of deep localized states always occurs and this effect must be
taken into consideration whenever any process controlled by bimolecular recombination
at low temperatures is concerned. Time dependencies of the carrier density calculated from
equation (24) are plotted in figure 2.

4.3. Practical implications

It will be realized that the above results refer to low-temperature hopping systems, and
do not contain temperature as a parameter. One should therefore be cautious in applying
the results to experimental situations. Only low-temperature, isothermal studies of carrier
transport as a function of excitation or defect density would qualify. Nevertheless, the results
do support the assumptions of filled deep traps and bimolecular recombination on which
the theoretical descriptions of thermally stimulated current experiments are based [16], or
which have been used in describing steady-state photoconductivity at low temperatures in
terms of transport energy [17].
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